Convexity of partial differential operators
نویسندگان
چکیده
منابع مشابه
Commutative Partial Differential Operators
In one variable, there exists a satisfactory classification of commutative rings of differential operators. In several variables, even the simplest generalizations seem to be unknown and in this report we give examples and pose questions that may suggest a theory to be developed. In particular, we address the existence of a “spectral variety” generalizing the spectral curve of the one dimension...
متن کاملPartial Differential Equations for Morphological Operators
Two of G. Matheron’s seminal contributions have been his development of size distributions (else called ‘granulometries’) and his kernel representation theory. The first deals with semigroups of multiscale openings and closings of binary images (shapes) by compact convex sets, a basic ingredient of which are the multiscale Minkowski dilations and erosions. The second deals with representing inc...
متن کاملEntropy and convexity for nonlinear partial differential equations.
Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal ...
متن کاملA Microscopic Convexity Principle for Nonlinear Partial Differential Equations
Caffarelli-Friedman [7] proved a constant rank theorem for convex solutions of semilinear elliptic equations in R2, a similar result was also discovered by Yau [28] at the same time. The result in [7] was generalized to R by Korevaar-Lewis [27] shortly after. This type of constant rank theorem is called microscopic convexity principle. It is a powerful tool in the study of geometric properties ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1969
ISSN: 0022-040X
DOI: 10.4310/jdg/1214428824